Neural nitric oxide mediates Edinger-Westphal nucleus evoked increase in choroidal blood flow in the pigeon.

نویسندگان

  • Y S Zagvazdin
  • M E Fitzgerald
  • G Sancesario
  • A Reiner
چکیده

PURPOSE Nitric oxide (NO) has been identified as a putative neurotransmitter in choroidal perivascular nerve fibers originating parasympathetically. Although constitutively produced NO has been implicated in the regulation of the choroidal circulation, the specific role of neurally derived NO in choroidal vasodilation has not been determined. This study examined the role of neurally derived NO in the control of the choroidal blood flow (ChBF) in vivo. METHODS Resting ChBF and a increase in ChBF elicited by electrical stimulation of the nucleus of Edinger-Westphal (EW) were measured transclerally by laser Doppler flowmetry in anesthetized pigeons before and after administration of a selective inhibitor of neural NO synthase, 7-Nitroindazole (7NI; 50 mg/kg given intraperitoneally); a nonselective NO synthase inhibitor, Ng-nitro-L-arginine methyl ester (L-NAME; 30 mg/kg given intravenously); L-arginine (300 mg/kg given intravenously) followed by 7NI (50 mg/kg given intraperitoneally); or vehicle. RESULTS The 7NI and L-NAME, but not the vehicle, attenuated the EW-evoked response (maximally by 78% and 83%, respectively), and this effect lasted for at least 1 hour. Pretreatment with L-arginine abolished this effect of 7NI. Resting ChBF was reduced and systemic blood pressure was increased after L-NAME administration, but both were unchanged after 7NI or vehicle were administered. CONCLUSIONS Neurally derived NO is responsible for a major component of the ChBF increase caused by EW stimulation in pigeons. This represents the first demonstration in vivo that neuronally produced NO is an important factor in the control of ChBF by the parasympathetic nervous system. In particular, neuronally produced NO appears to play a role in rapid upregulation of ChBF in the pigeon, whereas endothelially produced NO plays a major role in control of resting ChBF.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of choroidal blood flow by the nucleus of Edinger-Westphal in pigeons: a laser Doppler study.

Anatomical studies in birds have suggested that choroidal blood flow may be regulated by a circuit involving the following serially-connected components: the retina-the suprachiasmatic nucleus (SCN)-the medial subdivision of the nucleus of Edinger-Westphal (mEW)-the ciliary ganglion-the choroidal blood vessels. In order to better clarify the role of this circuit, we examined the effects of elec...

متن کامل

Visual acuity losses in pigeons with lesions of the nucleus of Edinger-Westphal that disrupt the adaptive regulation of choroidal blood flow.

Choroidal blood flow (ChBF) in birds is regulated by a neural circuit whose components are the retina, the suprachiasmatic nucleus, the medial division of the Edinger-Westphal nucleus (EWM), the ciliary ganglion, and the choriod. We have previously shown that lesions of EWM appear to result in pathological alterations in the retina. To determine whether EWM lesions also lead to altered visual f...

متن کامل

Type-specific photoreceptor loss in pigeons after disruption of parasympathetic control of choroidal blood flow by the medial subdivision of the nucleus of Edinger–Westphal

The medial part of the nucleus of Edinger-Westphal (EWM) in birds mediates light-regulated adaptive increases in choroidal blood flow (ChBF). We sought to characterize the effect of loss of EWM-mediated ChBF regulation on photoreceptor health in pigeons housed in either moderate intensity diurnal or constant light (CL). Photoreceptor abundance following complete EWM destruction was compared to ...

متن کامل

Nitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia

Objective(s): Nucleus Raphe Magnus (NRM) that is involved in the regulation of body temperature contains nitric oxide (NO) synthase. Considering the effect of NO on skin blood flow control, in this study, we assessed its thermoregulatory role within the raphe magnus. Materials and Methods: To this end, tail blood flow of male Wistar rats was measured by laser doppler following the induction of ...

متن کامل

Stimulation of Baroresponsive Parts of the Nucleus of the Solitary Tract Produces Nitric Oxide-mediated Choroidal Vasodilation in Rat Eye

Preganglionic parasympathetic neurons of the ventromedial part of the superior salivatory nucleus (SSN) mediate vasodilation of orbital and choroidal blood vessels, via their projection to the nitrergic pterygopalatine ganglion (PPG) neurons that innervate these vessels. We recently showed that the baroresponsive part of the nucleus of the solitary tract (NTS) innervates choroidal control paras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 37 4  شماره 

صفحات  -

تاریخ انتشار 1996